Visual Stimulation Activates ERK in Synaptic and Somatic Compartments of Rat Cortical Neurons with Parallel Kinetics
نویسندگان
چکیده
BACKGROUND Extracellular signal-regulated kinase (ERK) signalling pathway plays a crucial role in regulating diverse neuronal processes, such as cell proliferation and differentiation, and long-term synaptic plasticity. However, a detailed understanding of the action of ERK in neurons is made difficult by the lack of knowledge about its subcellular localization in response to physiological stimuli. To address this issue, we have studied the effect of visual stimulation in vivo of dark-reared rats on the spatial-temporal dynamics of ERK activation in pyramidal neurons of the visual cortex. METHODOLOGY/PRINCIPAL FINDINGS Using immunogold electron microscopy, we show that phosphorylated ERK (pERK) is present in dendritic spines, both at synaptic and non-synaptic plasma membrane domains. Moreover, pERK is also detected in presynaptic axonal boutons forming connections with dendritic spines. Visual stimulation after dark rearing during the critical period causes a rapid increase in the number of pERK-labelled synapses in cortical layers I-II/III. This visually-induced activation of ERK at synaptic sites occurs in pre- and post-synaptic compartments and its temporal profile is identical to that of ERK activation in neuronal cell bodies. CONCLUSIONS/SIGNIFICANCE Visual stimulation in vivo increases pERK expression at pre- and post-synaptic sites of axo-spinous junctions, suggesting that ERK plays an important role in the local modulation of synaptic function. The data presented here support a model in which pERK can have early and late actions both centrally in the cell nucleus and peripherally at synaptic contacts.
منابع مشابه
(S)- 3,5-Dihydroxyphenylglycine )an agonist for group I metabotropic glutamate receptors( induced synaptic potentiation at excitatory synapses on fast spiking GABAergic cells in visual cortex
Introduction: (S)- 3,5-Dihydroxyphenylglycine (DHPG) is an agonist for group I metabotropic glutamate receptors. DHPG-induced synaptic depression of excitatory synapses on hippocampal pyramidal neurons is well known model for synaptic plasticity studies. The aim of the present study was to examine the effects of DHPG superfusion on excitatory synapses on pyramidal and fast-spiking GABAergic cel...
متن کاملDevelopmental Effects of Melatonin on Synaptic Plasticity of Hippocampal CA1 Neurons in Visual Deprived Rats
Background & Aims: Change in visual experience impairs circadian rhythms. In this study, The effects of visual deprivation during critical period of brain development and melatonin intake on synaptic plasticity of hippocampal CA1 neurons were evaluated. Methods: This experimental study was done on male rats kept in standard 12 hour light/dark condition (L...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملCellular effects of acute direct current stimulation: somatic and synaptic terminal effects.
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique to modulate cortical excitability. Although increased/decreased excitability under the anode/cathode electrode is nominally associated with membrane depolarization/hyperpolarization, which cellular compartments (somas, dendrites, axons and their terminals) mediate changes in cortical excitability remain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 2 شماره
صفحات -
تاریخ انتشار 2007